

Optional static type checking
for Python using mypy

Guido van Rossum
Principal Engineer, Dropbox

Static type checking

o Type checking done by the compiler, before running the code

® talk — -bash — 63x8

public static int add(int a, int b) {
return a + Db;
s

public static void main(String args[]) {
System.out.println("The answer is " + add(2, 40));
'

Dynamic type checking

e Jype checking is based on actual values at run time

. O talk — python3.8 — 65x13
>>>
® O @ [talk — -bash — 20x5 >>> from util import add
def add(a, b): L >>> add(2, 40)
return a + b 49
>>> add("hello ", "world")

'hello world'
>>> add(42, "hello")
Traceback (most recent call last):

File "<stdin>", line 1, 1n <module>

File "/Users/guido/talk/util.py", line 2, in add

return a + b

TypeError: unsupported operand type(s) for +: 'int' and 'str'
>>>

Perfect, right!?

¢ Why would you want it any other way!

Perfect, right!?

¢ Why would you want it any other way!

®@ O talk — python3.8 — 65x13
® ® ® B talk — -bash — 22x9 >>> from util import total
def add(a. b): = >>> total(range(190))
A 45
+
return a b SSS tOtal(["a", "b", "C"])

_ Traceback (most recent call last):

get Eo:aé(ns). File "<stdin>", line 1, 1n <module>

File "/Users/guido/talk/util.py", line 7, in total
t = add(t, n)

File "/Users/guido/talk/util.py", line 2, 1n add
return a + b

TypeError: unsupported operand type(s) for +: 'int' and 'str'
>>>

>>>

for n 1n ns:
t = add(t, n)
return t

Long story short...

e Python is hard to beat for young and/or small code bases

e But for old, large code bases, is there a better way!?
e Other than rewriting everything in Java :-)

¢ Based on the response to mypy, yes!

e Optional static type checking, a.k.a. gradual typing helps
¢ Doesn't compromise runtime type safety
¢ Type annotations are an added safety feature
e Like a linter on steroids

VVhy type annotations

Find bugs faster/cheaper
Find different classes of bugs than tests

Help with refactoring
e Special case: Python 2 to 3 migration

Docs that are automatically verified

While debugging
e What's expected compared to actual value

Non-goals

¢ Run-time type checking
¢ Too slow, especially for generics

¢ Machine code generation
e Python's precise semantics are hard to capture
® (However...)

Gradual typing

e You can't annotate millions of lines in one fell swoop

¢ Gradual typing lets you add annotations one function at a time
¢ Annotated and unannotated code can be mixed freely

¢ At the boundaries, type checks are suppressed
e This is a compromise for usability

O O talk — -bash — 24x6
def foo(x): =
return x + 1

def bar(x: str) -> str:
return foo(x)

Basics

. . N _ talk — -bash — 34x6
* Function annotations def gcd(a: int, b: 1int) -> 1int:
while a:
a, b = b%a, a
return b
e TJype constructors
¢ Unionlint, str]
o Optional[float]
o Tuple[int, int, str]
¢ TuPIe[Int’ "'] @O0 talk — -bash — 43x8
class Point:
x: float
y: float

e Variable declarations
def length(self) -> float:

z: float = self.x*k%2 + self.y*xx%x2
return math.sqrt(z)

(Generics

o List[int], Dict[str, float], Set[str], ...

¢ [terable[str], Sequence[Tuple[int, int]], Mapping[str, List[str]], ...

NN talk — -bash — 45x12
from typing import Generic, TypeVar, Iterable ©
e NN talk — -bash — 41x7
T = TypeVar{"T*) IntArray = Array[int]
class Array(GenericliT)): counts = IntArray([42, 123, 1_000_000])
def __init__(self, xs: Iterable[T]): § s irag
861f.xg = listixs) X = counts[3.14] # ERROR

def __getitem__(self, 1: 1nt) -> T:
return self.xs[i]

Protocols

¢ For duck typing
e Similar to Go interfaces

class IntStack:
xs: List[int]

gdot: - anit - {salt):

"NoN W talk — -bash — 42x10 self.xs = []

from typing import Protocol, TypeVar .
def push(self, x: int) -> None:

T = TypeVar(“T") self.xs.append(x)

class Stack(Protocol[T]): def pop(self) -> 1int:
return self.xs.pop()

def push(self, x: T) -> None: : ,
def f(x: Stack[int]) -> int:

def pop(self) -> T: ... x.push(42)
. return x.pop()

f(IntStack())

Pragmatics

¢ Must import things from typing

e Stub files, e.g. builtins.pyi
¢ Contain signatures for classes/functions

e Collection of stub files on GitHub: typeshed

e Jype comments
e For Python 2
o Also allowed in Python 3 i Lol el .
type: (int, int) -> int

¢ For straddling code while a:
a, b = b%a, a
return b

O talk — -bash — 34x6

Nasty bits

Unions and Optional are verbose

Forward references are ugly
e But..from _ future _ import annotations

Callable[[int, int], int] is verbose
Sometimes need cast(type, value) or # type: ignore

Unannotated code is not checked by default
e This is the essence of gradual typing, but still a surprise

Ristory lesson

¢ |n the early 1990s, dynamic typing was the underdog
e Think Perl vs. C++

¢ As the web grew, LAMP popularized dynamic languages
e Perl/PHP/Python/Ruby (also JavaScript)
¢ Python was the secret weapon of web startups

e As early as 1998, a types-sig was formed
e Burned up quickly, disbanded in 2000
¢ | found a talk from |/19/2000 that was pretty prescient!

® Here are some sample slides

Optional Static Typing

Guido van Rossum
(with Paul Prescod, Greg Stein,
and the types-SIG)

Why Add Static Typing?

e TWO separate goals:
- faster code (OPT)

- better compile-time errors (ERR)

e Mostly interested in (ERR)
- (OPT) will follow suit

e Of course it will be optional
- and (mostly) backwards compatible

Declaration Syntax

e Two forms: inline and explicit
- explicit form is easy to remove

e Inline:
e def ged(a: int, b: int) -> int: ...

e Explicit (two variants):
¢ decl gcd: def(int, int) -> Int
def gcd(a, b): ...
e def ged(a, b):
decl a: int, b: Int
decl return: int

Constructing Types

e Syntax for type composition:
- list with items of type T: [T]
-tupleof T1,T2,T3: (T1, T2, T3)

¢ (this explains why we have both tuples and lists!)

- dict with key/value types T1/T2: {T1: T2}
- union of types Tl and T2: T1 | T2
- function (e.qg.): def(T1, T2)->T3
e Example:
- {str: (int, int) | (int, int, str) | None}

Parameterized Types

e Needed e.qg. for container classes:

class Stack<T>:
decl st. T
def __init_ (self): self.st= []
def pushiself, x: T): self.st append(x)
def pop(self) - T: x = self.st[-1]; del self.st[-1]; return x

decl IntStack = Stack<int> # template instantiation
decl s: IntStack

s = IntStack() # or s = Stack() ??7

s.pushil)

decl x: int

X = S.pop()

s.push{"spam") # ERROR

History repeats itself

In 2004-2005 | wrote two large blog posts about the topic
Many of the same ideas, but improved

Basic function annotation still the same

Uses sequence(T) instead of Sequence[T]

Different syntax to create a generic class
¢ Not constrained by existing syntax

B
a rt“ I .a Scala consulting, training, books, and tools
Articles | News | Weblogs | Books | Forums

Artima Weblogs | Guido van van Rossum's Weblog | Discuss | Email | Print | Bloggers | Previous | Next
Sponsored Link *

All Things Pythonic

Adding Optional Static Typing to Python

by Guido van van Rossum
December 23, 2004

Summary

Optional static typing has long been requested as a Python feature. It's
been studied in depth before (e.g. on the type-sig) but has proven too
hard for even a PEP to appear. In this post I'm putting together my latest

thoughts on some issues, without necessarily hoping to solve all
problems.

ADVERTISEMENT

An email exchange with Neal Norwitz that started out as an inquiry
about the opening of a stock account for the PSF (talk about bizarre conversation
twists) ended up jogging my thoughts about optional static typing for Python.

Let's look at a simple function:

def ged(a, b):
while a:
a, b =b%a, a
return b

This pretty much only makes sense with integer arguments, but the compiler won't
stop you if you call it with string or floating point arguments. Purely based on the
type system, those types are fine: the % operator on two strings does string
formatting (e.g. "(%s)" % "foobar" gives "(foobar)"), and Python happens to define
% on floats as well (3.7 % 0.5 gives 0.2). But with string arguments the function is
likely to raise a TypeError (gcd(™, "%s") notwithstanding) and float arguments often
cause bogus results due to the rounding errors.

So let's consider a simple type annotation for this function:

def ged(a: int, b: int) -> int:
while a.:
a,b=b%a, a
return b

This time it happened

Much debate followed

There was no agreement on generics
But we agreed on function annotations
In 2006, PEP 3107 was accepted
Syntax for arguments and return types

Semantics left to 3rd party code
¢ Annotations end up in __annotations___ dict on function

Python > Python Developer's Guide »» PEP Index »» PEP 3107 -- Function Annotations

PEP 3107 -- Function Annotations

PEP: 3107

Title: Function Annotations

Author: Collin Winter <collinwinter at google.com>, Tony Lownds <tony at
lownds.com>

Status: Final

Type: Standards Track

Created: 2-Dec-2006

Python- 3.0

Version

Fundamentals of Function Annotations

Before launching into a discussion of the precise ins and outs of Python 3.0's function annotations,

let's first talk broadly about what annotations are and are not:
1. Function annotations, both for parameters and return values, are completely optional.

2. Function annotations are nothing more than a way of associating arbitrary Python expressions

with various parts of a function at compile-time.

By itself, Python does not attach any particular meaning or significance to annotations. Left to
its own, Python simply makes these expressions available as described in Accessing Function

Annotations below.

The only way that annotations take on meaning is when they are interpreted by third-party li-
braries. These annotation consumers can do anything they want with a function's annotations.
For example, one library might use string-based annotations to provide improved help mes-

sages, like so:

def compile(source: "something compilable",
filename: "where the compilable thing comes from",

mode: "is this a single statement or a suite?"):

Then, nothing

At least not until 2014, when Python 3.5 was being hatched
In 2015, after much fireworks, PEP 484 was accepted
Here's how that happened

Thanks to a soft-spoken Finn, Jukka Lehtosalo

Read about it on the Dropbox blog
¢ "Our journey to type checking 4 million lines of Python"
e Posted September 5,2019

Type checking at Dropbox

e 2012:]Jukka designs Alore; gradually typed, translates to Python
e 2013: Guido suggests to target PEP 3107; Dropbox hires Jukka
¢ 2014: Dropbox Hack Week experiments, PEP 484 started

e 2015:Python 3.5 ships with PEP 484, mypy matures

e 2016:Introduction of mypy in Dropbox Cl; mypy team formed

e 2017-2019: mypy conquers Dropbox, and the world

Performance

¢ When you have a popular tool, performance becomes an issue

* Ve went through several stages

|. Incremental mode: cache unchanged modules on disk
Download pre-computed cache
Daemon: cache unchanged functions in memory

Shave seconds off integration scripts startup time

v A~ W N

Write a compiler (mypyc) — 4x speedup

¢ Woatch Michael Sullivan’s talk at PyCon US 2019

Future

e Several typing PEPs in the works
e 585:replace List[int] with list[int] (etc.) — finally!
¢ 593:Annotated[t, extra,...] — to add 3rd party metadata
® 604: replace UnionJint, str] with int|str — finally!
e TBD: more explicit syntax for type aliases

e Type system features to support numpy, pandas etc.
e Shape types: matmul(Array[N, M],Array[M, K]) -> Array[N, K]
® Variadic type variables: sum(Array[Ts],Array[Ts]) -> Array|[Ts]

® Productionize mypyc
e |[ooking for early adopters

Open source

e Fork us on GitHub!

e github.com/python/mypy
e github,com/python/typeshed

