


Optional static type checking 
for Python using mypy

Guido van Rossum
Principal Engineer, Dropbox



Static type checking
• Type checking done by the compiler, before running the code



Dynamic type checking
• Type checking is based on actual values at run time



Perfect, right?
• Why would you want it any other way?



Perfect, right?
• Why would you want it any other way?



Long story short...
• Python is hard to beat for young and/or small code bases 

• But for old, large code bases, is there a better way?
• Other than rewriting everything in Java :-)

• Based on the response to mypy, yes!

• Optional static type checking, a.k.a. gradual typing helps
• Doesn't compromise runtime type safety
• Type annotations are an added safety feature
• Like a linter on steroids



Why type annotations
• Find bugs faster/cheaper 

• Find different classes of bugs than tests

• Help with refactoring
• Special case: Python 2 to 3 migration

• Docs that are automatically verified

• While debugging
• What's expected compared to actual value



Non-goals
• Run-time type checking
• Too slow, especially for generics

• Machine code generation
• Python's precise semantics are hard to capture
• (However...)



Gradual typing
• You can't annotate millions of lines in one fell swoop

• Gradual typing lets you add annotations one function at a time
• Annotated and unannotated code can be mixed freely

• At the boundaries, type checks are suppressed
• This is a compromise for usability



Basics
• Function annotations

• Type constructors
• Union[int, str]
• Optional[float]
• Tuple[int, int, str]
• Tuple[int, ...]

• Variable declarations



Generics
• List[int], Dict[str, float], Set[str], ...

• Iterable[str], Sequence[Tuple[int, int]], Mapping[str, List[str]], ...



Protocols
• For duck typing
• Similar to Go interfaces



Pragmatics
• Must import things from typing

• Stub files, e.g. builtins.pyi
• Contain signatures for classes/functions
• Collection of stub files on GitHub: typeshed

• Type comments
• For Python 2
• Also allowed in Python 3
• For straddling code



Nasty bits
• Unions and Optional are verbose

• Forward references are ugly
• But... from __future__ import annotations

• Callable[[int, int], int] is verbose

• Sometimes need cast(type, value) or # type: ignore

• Unannotated code is not checked by default
• This is the essence of gradual typing, but still a surprise



History lesson
• In the early 1990s, dynamic typing was the underdog
• Think Perl vs. C++

• As the web grew, LAMP popularized dynamic languages
• Perl/PHP/Python/Ruby (also JavaScript)
• Python was the secret weapon of web startups

• As early as 1998, a types-sig was formed
• Burned up quickly, disbanded in 2000
• I found a talk from 1/19/2000 that was pretty prescient!

• Here are some sample slides













History repeats itself
• In 2004-2005 I wrote two large blog posts about the topic

• Many of the same ideas, but improved

• Basic function annotation still the same

• Uses sequence(T) instead of Sequence[T]

• Different syntax to create a generic class
• Not constrained by existing syntax







This time it happened
• Much debate followed

• There was no agreement on generics

• But we agreed on function annotations

• In 2006, PEP 3107 was accepted

• Syntax for arguments and return types

• Semantics left to 3rd party code
• Annotations end up in __annotations__ dict on function







Then, nothing
• At least not until 2014, when Python 3.5 was being hatched

• In 2015, after much fireworks, PEP 484 was accepted

• Here's how that happened

• Thanks to a soft-spoken Finn, Jukka Lehtosalo

• Read about it on the Dropbox blog

• "Our journey to type checking 4 million lines of Python"

• Posted September 5, 2019



Type checking at Dropbox
• 2012: Jukka designs Alore; gradually typed, translates to Python

• 2013: Guido suggests to target PEP 3107; Dropbox hires Jukka

• 2014: Dropbox Hack Week experiments, PEP 484 started

• 2015: Python 3.5 ships with PEP 484, mypy matures

• 2016: Introduction of mypy in Dropbox CI; mypy team formed

• 2017-2019: mypy conquers Dropbox, and the world



Performance
• When you have a popular tool, performance becomes an issue

• We went through several stages

1. Incremental mode: cache unchanged modules on disk

2. Download pre-computed cache

3. Daemon: cache unchanged functions in memory

4. Shave seconds off integration scripts startup time

5. Write a compiler (mypyc) — 4x speedup

• Watch Michael Sullivan’s talk at PyCon US 2019



Future
• Several typing PEPs in the works

• 585: replace List[int] with list[int] (etc.) — finally!

• 593: Annotated[t, extra, ...] — to add 3rd party metadata

• 604: replace Union[int, str] with int|str — finally!

• TBD: more explicit syntax for type aliases

• Type system features to support numpy, pandas etc.

• Shape types: matmul(Array[N, M], Array[M, K]) -> Array[N, K]

• Variadic type variables: sum(Array[Ts], Array[Ts]) -> Array[Ts]

• Productionize mypyc

• Looking for early adopters



Open source
• Fork us on GitHub!

• github.com/python/mypy

• github,com/python/typeshed




